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Many attribution methods are
highly sensitive to changes in
their common hyperparameters.
This sensitivity also translates
into variation in accuracy scores.

J

a®
Compared to regular classifiers, ”
explanations for robust Patch size: ) X D 29 x 29 53 X 53 |
classifiers are more invariant to '
input perturbations and more i
consistent when hyperparameter é ‘ L
ChangeS. Blur radius: 10 30 |
Vanilla gradient images can '
exhibit clear visible outlines of = \
objects in the input image. | | L.

Sample size: 200 800

Classmer: matchstick 0.535

SAM: The Sensitivity of Attribution Methods to Hyperparameters
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* The vanilla gradients of robust classifiers (GoogLeNet-R, ResNet-R)
consistently exhibit visible object outlines, which is in stark contrast to
the notoriously noisy gradient saliency maps of regular classifiers
(GoogLeNet, ResNet).

* The gradient explanations of robust classifiers are significantly more
invariant to a large amount of random noise added to the input image.

(a) Input image (b) Grad (c) Nsg=50 (d) Nsg=100 (e) Nsg=200 (f) Nsa=500 (g) Nsg=800 (h) GB [49] (1) ResNet-R Grad
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» Smoothing / denoising explanations
may mislead our interpretation of explanations.

 E.g. SmoothGrad (SG) heatmaps of a ResNet
become increasingly similar to the gradient of a
completely different network (ResNet-R) as we
iIncrease the smoothing hyperparameter.

* On average, SSIM similarity increases ~1.4 X . "6 so 100 200 560 800
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Sliding-Patch (SP) heatmaps are, by SSIM:0.8509

design, sensitive to patch sizes. SG heatmaps for ResNet-R are more robust.
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* Variation in heatmaps (SSIM) also translates into the variation in the
accuracy scores (WSL and Deletion).

 WSL scores are highly sensitive with average stds being ~0.51 X and
~0.31 X of the mean accuracy scores for both regular and robust models.

* Across all four tested hyperparameters, the correctness of explanations for
robust models is on average 2.4 X less variable than regular models

« Even a small pixel-wise variation in explanation (~1 mean SSIM for SP-S)
may lead to large variation in accuracy scores (stds are ~10% of mean
statistics in SP-S)

Input image br=5 br=10 br=30 IHPUt image Niter=10 Niter=150 Niter=300 Niter=450

ResNet

ResNet-R

SSIM: 0.8493

SSIM: 0.9313
Meaningful Perturbation (MP) heatmaps for ResNet vary dramatically. In

contrast, MP heatmaps for robust models (ResNet-R) are ~1.4 X more
consistent under SSIM metric and converge faster (10 steps vs. 300 default).
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« Some hyperparameters leads to higher variation in explanation accuracy
scores as opposed to others.

* In LIME, the variation in the number of super-pixels leads to higher
sensitivity as compared to the random seed (130.5 X higher std).

* In MP, the std of Insertion scores is 74 X and 16.6 X higher for variation in
number of iteration and blur radius respectively as compared to changing
the random seed.

* Changing the random seed in LIME vs MP (two different methods)
interestingly causes a similar variation in all three-accuracy metrics.
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