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Attribution maps as explanations
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Deconvnet: Visualizing and understanding convolutional networks. Zeiler et al. 2014

Guided-backprop: Striving for simplicity: The all convolutional net. Springenberg et al. 2015

Integrated Gradients: Axiomatic Attribution for Deep Networks. Sundararajan et al. 2018

CAM: Learning Deep Features for Discriminative Localization. Zhou et al. 2016

LIME: Why should i trust you?: Explaining the predictions of any classifier. Ribeiro et al. 2016

SmoothGrad: removing noise by adding noise. Smilkov et al. 2017

MP: Interpretable Explanations of Black Boxes by Meaningful Perturbation. Fong et al. 2017

SHAP: A Unified Approach to Interpreting Model Predictions. Lundberg et al. 2017

PDA: Visualizing deep neural network decisions: Prediction difference analysis. Zintgraf et al. 2017 

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. Selvaraju et al. 2017

Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks. Chattopadhyay et al. 2017

LRP: Beyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation

DeepLIFT: Learning important features through propagating activation differences. Shrikumar et al. 2017

RISE: Randomized Input Sampling for Explanation of Black-box Models. Petsiuk et al. 2018

FIDO: Explaining image classifiers by counterfactual generation. Chang et al. 2019

Expected Gradients: Learning Explainable Models Using Attribution Priors. Erion et al. 2019

FG-Vis: Interpretable and Fine-Grained Visual Explanations for Convolutional Neural Networks. Wagner et al. CVPR 2019

Understanding Deep Networks via Extremal Perturbations and Smooth Masks. Fong et al. ICCV 2019

MP-G: Removing input features via a generative model to explain their attributions to classifier's decisions. Agarwal et al. 2020
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Are these explanations correct and reliable?
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Are these explanations correct and reliable?
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Problems:
• too noisy

Method 0: Saliency maps
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Method 1: Smoothed saliency maps
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#1: Saliency maps may NOT be too noisy!
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#1: Saliency maps may NOT be too noisy!
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#1.1 Robust models are able to handle the 
additive noise to the input image
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A robust classifier i.e.
adversarially trained with noisy images
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#2: Smoothed gradients can be misinterpreted



#2: Smoothed gradients can be misinterpreted
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#3: Many attribution maps are sensitive to hyperparams
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#4: Attribution maps are more robust under robust classifiers
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Idea: Find a minimal region s.t. when
blurred out would minimize classification score



#4: Attribution maps are more robust under robust classifiers
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#4: Attribution maps are more robust under robust classifiers

26Meaningful-Perturbation (MP)



#4: Attribution maps are more robust under robust classifiers
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#5 Pixel-wise sensitivity translates to sensitivity 
in accuracy scores/downstream tasks
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#5 Pixel-wise sensitivity translates to sensitivity 
in accuracy scores/downstream tasks
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SSIM Localization Error 
(WSL)
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Sliding Patch with very close 
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#5 Pixel-wise sensitivity translates to sensitivity 
in accuracy scores/downstream tasks
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#6: Some hyperparameters are more detrimental
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Conclusions

1. Gradient images for robust classifiers are smooth

2. Smoothing gradients may cause misinterpretation

3. Many attribution methods are sensitive to hyper-parameters

4. For robust classifiers, attribution maps are more robust 
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